computational help and cooperation. SP thanks the CSIR (Government of India) for a Senior Research Fellowship.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: VJ1008). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Banerjee, A., Dattagupta, J. K., Saenger, W. \& Rabczenko, A. (1977). Acta Cryst. B33, 90-94.
Banerjee, A., Saenger, W., Lesyng, B., Kazimierczuk, Z. \& Shugar, D. (1978). Acta Cryst. B34, 2472-2477.

Biswas, G., Iitaka, Y., Shugar, D. \& Banerjee, A. (1989). Nucleosides Nucleotides, 8, 1335-1343.
Hitchings, G. H., Elion, G. B., Vanderwerff, H. \& Falco, E. A. (1948). J. Biol. Chem. 174, 765-767.

Hitchings, G. H., Falco, E. A., Vanderwerff, H., Russel, P. B. \& Elion, G. B. (1952). J. Biol. Chem. 199, 43-45.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Mukherjee, M. (1968). PhD thesis, University of Calcutta, India.
Nardelli, M. (1983). Comput. Chem. 7, 95-97.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 2022-2024

Bromobis(diethyldithiocarbamato)-(4-methoxyphenyl)tellurium(IV)

Steinar Husebye, ${ }^{a}$ Thoralf Engebretsen, ${ }^{a}$ Martin D. Rudd a and Sergey V. Lindeman ${ }^{b}$
${ }^{a}$ Department of Chemistry, University of Bergen, 41 Allegaten, N-5007 Bergen, Norway, and ${ }^{b}$ Institute of Organoelement Compounds, 28 Vavilov St., Moscow 117813, Russia. E-mail: steinar.husebye@kj.uib.no

(Received 15 November 1995; accepted 15 February 1996)

Abstract

The crystals of the $\mathrm{Te}^{\mathrm{IV}}$ complex $p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{Te}$ $\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{Br}$ are isomorphous with those of the iodine and mixed iodine/bromine analogues previously investigated. The structure is pentagonal bipyramidal at the Te atom with four S atoms [Te-S 2.618-2.721 (1) Å] and the Br atom $[\mathrm{Te}-\mathrm{Br} 2.943(1) \AA$] in equatorial positions. The p-methoxyphenyl group is axial $[\mathrm{Te}-\mathrm{C}$ 2.147 (3) \AA]. The second axial position is approached by a Br atom of a centrosymmetrically related complex
$\left[\mathrm{Te} \cdots \mathrm{Br} 3.423(1) \AA, \mathrm{C}-\mathrm{Te} \cdots \mathrm{Br} 173.1(1)^{\circ}\right]$ so that the molecules are joined into centrosymmetric pairs by this weak secondary coordination.

Comment

The structure of the title complex, (1), is quite similar to the isomorphous structures of the iodo complex $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{I}$, (2), and the mixed Br / I complex $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{Br}_{0.41} \mathrm{I}_{0.59}$, (3), investigated earlier (Husebye, Kudis \& Lindeman, 1996a). Therefore, the discussion will focus only on those structural parameters of complex (1) which differ significantly from the corresponding structural parameters of (2) and (3), and are an effect of the halogen-atom replacement.

(1)

The Te atom in complex (1) has pentagonal bipyramidal coordination geometry with two bidentate dithiocarbamate ligands and a Br atom in the equatorial plane. There is an aryl group and a secondary bonded Br atom of a centrosymmetrically related complex in axial positions (Fig. 1), so that the molecules of (1) are connected into weakly bound dimers via two bridging bromine ligands. This secondary bonding is weaker than in the corresponding iodide the $\mathrm{Te}-\mathrm{Br}$ and $\mathrm{Te} \cdots \mathrm{Br}$ distances differ by 0.480 (1) \AA in (1), whereas the Te-I and $\mathrm{Te} \cdots \mathrm{I}$ distances differ by 0.400 (1) and 0.394 (2) \AA in (2) and (3), respectively], in full agreement with the weaker trans influence of Br as compared to I. However,

Fig. 1. Perspective view of (1) showing a pair of centrosymmetrically related molecules loosely associated by secondary $\mathrm{Te} \cdot \mathrm{Br}$ contacts (dashed lines). The displacement ellipsoids are drawn at the 50% probability level.
it is somewhat stronger than we expected. We previously believed that the relatively short secondary intermolecular Te \cdots I contacts had a shortening effect upon the corresponding $\mathrm{Te} \cdots \mathrm{Br}$ contacts in the mixed complex (3) (Husebye, Kudis \& Lindeman, 1996a). However, the difference between the $\mathrm{Te}-\mathrm{Br}$ and $\mathrm{Te} \cdots \mathrm{Br}$ distances in the ordered crystals of (1) turned out to be less than that found in (3) $[0.572$ (6) A \AA. So the above effect may, on the contrary, be considered rather as a 'loosening' effect. The bond angles $\mathrm{C}-\mathrm{Te} \cdots \mathrm{Br}\left[173.05(7)^{\circ}\right]$ and $\mathrm{Te}-\mathrm{Br} \cdots \mathrm{Te}\left[89.80(1)^{\circ}\right]$ have close to 'ideal' values. Such secondary bonding towards 'empty' positions in the coordination sphere of tellurium is quite common in thio and halo complexes (Husebye, 1983; Haiduc, King \& Newton, 1994).

The intramolecular $\mathrm{Te}-\mathrm{Br}$ bond length in (1) [2.943 (1) \AA] is noticeably lengthened compared with that found in the closely related complex $p-\mathrm{MeOC}_{6} \mathrm{H}_{4}-$ $\mathrm{Te}\left(\mathrm{Me}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{Br}$ dichloromethane hemisolvate, (4) [2.890 (1) \AA; Husebye, Kudis \& Lindeman, 1996b], in which the Br atom does not take part in secondary bonding. Nevertheless, the $\mathrm{Te}-\mathrm{C}(\mathrm{Ar})$ bond in (1), which is located trans to the secondary $\mathrm{Te} \cdots \mathrm{Br}$ bond, has practically the same length [2.147 (3) \AA] as in (4) [2.145 (3) Å], where the additional trans ligand is not a halogen, but a dithiocarbamate group of a neighbouring molecule acting as a π ligand. So, the trans influences of these secondary coordinated ligands seem to be similar.

The p-methoxyphenyl ligand has the usual planar π-conjugated structure; the torsion angle $\mathrm{C} 13-\mathrm{C} 14-$ O1-C17 is only $3.4(4)^{\circ}$.

Both dithiocarbamate ligands are quite symmetrically coordinated to the Te atom, but the S atoms in the quasi-trans positions to bromine are nearer the Te atom than the atoms in the quasi-cis positions: the $\mathrm{Te}-\mathrm{S} 1$ and Te -S3 distances are 2.619 (1) and 2.618 (1) \AA with corresponding $\mathrm{Br}-\mathrm{Te}-\mathrm{S}$ bond angles of 142.45 (2) and $141.09(2)^{\circ}$, respectively, while $\mathrm{Te}-\mathrm{S} 2$ and $\mathrm{Te}-\mathrm{S} 4$ distances are 2.721 (1) and 2.691 (1) \AA with $\mathrm{Br}-\mathrm{Te}-\mathrm{S}$ angles of 76.55 (2) and $73.65(2)^{\circ}$, respectively. These geometric parameters are very close to those found in (2)-(4) and are, evidently, the result of a trans influence of the halogen substituent in the equatorial plane.

The $\mathrm{Br} 1-\mathrm{Te} 1-\mathrm{Cl1}$ group forms an approximate mirror plane except for the C3 and C8 methyl groups. The main twist of the aryl plane away from this 'mirror' plane is represented by the $\mathrm{Brl}-\mathrm{Te} 1-\mathrm{Cl1}-$ C16 torsion angle of $15.0(2)^{\circ}$. The Te atom in (1) is practically in the mean plane of the equatorial substituents, in contrast to the shift of $0.055(1) \AA$ toward the aryl ligand found in the structure of (2).

The folding of one of the dithiocarbamate chelate rings ($\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2-\mathrm{Te} 1$) in molecule (1) is less pronounced than in its isomorphous analogue (2) [the folding angles are $8.5(1)$ and $12.3(1)^{\circ}$ in (1) and (2), respectively, against the aryl ligand along the line S $\mathrm{S}]$. The other chelate ring maintains its practically planar
conformation [the folding angles are $1.9(1)$ and $1.8(1)^{\circ}$ in (1) and (2), respectively]. Both dithiocarbamate ligands have normal π-conjugated structures [the $\mathrm{C}_{s p^{2}}-\mathrm{N}$ bond distances are 1.316 and 1.323 (4) \AA, the twist about these bonds is no more than $8.8(2)^{\circ}$ and the configuration of the N atoms is planar within 0.030 (3) \AA A].

In contrast to the isomorphous structures (2) and (3), investigated at room temperature, there is no disorder found at low temperature in the structure of (1): the C4-C5 group, which was disordered in (2) and (3), has only slightly increased atomic displacement parameters and is syn-oriented relative to the other ethyl group, like the major components in the disordered structures (2) and (3). The other diethyldithiocarbamate ligand has an anti-orientation of the two ethyl groups.

Experimental

The title complex, (1), was synthesized by adding a solution of 1.02 mmol of Br_{2} in 3 ml of CCl_{4} dropwise to a stirred solution of 1.02 mmol of $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{3}$ in 15 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The stirring was continued for 2 h . A viscous oil slowly formed over two days. The oil was separated and dissolved in 10 ml of ethanol, to which a few drops of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. Upon standing, orange-yellow crystals of (1) separated out. Yield based on initial Te compound: 81% $(0.504 \mathrm{~g})$.

Crystal data

```
\(\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{OS}_{4} \mathrm{Te}\)
\(M_{r}=611.16\)
Monoclinic
\(P_{1} / n\)
\(a=9.977\) (2) \(\AA\)
\(b=14.009(3) \AA\)
\(c=16.462(3) \AA\)
\(\beta=91.21\) (3) \({ }^{\circ}\)
\(V=2300.3(8) \AA^{3}\)
\(Z=4\)
\(D_{x}=1.765 \mathrm{Mg} \mathrm{m}^{-3}\)
```

Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
ψ scan (MolEN; Fair, 1990)
$T_{\text {min }}=0.286, T_{\text {max }}=$ 0.421

4668 measured reflections
4456 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=11.4-12.6^{\circ}$
$\mu=3.403 \mathrm{~mm}^{-1}$
$T=103$ (2) K
Prism
$0.15 \times 0.12 \times 0.09 \mathrm{~mm}$
Orange-yellow

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0278$
$w R\left(F^{2}\right)=0.0880$
$S=1.028$

3988 observed reflections [$I>2 \sigma(I)]$
$R_{\text {int }}=0.0208$
$\theta_{\text {max }}=25.97^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 17$
$l=-20 \rightarrow 20$
3 standard reflections frequency: 120 min intensity decay: 3.4%
$(\Delta / \sigma)_{\text {max }}=0.017$
$\Delta \rho_{\text {max }}=1.87 \mathrm{e} \AA_{\mathrm{o}}^{-3}$
$\Delta \rho_{\text {min }}=-1.34 \mathrm{e}^{-3}$
Extinction correction: none

4446 reflections
343 parameters
All H-atom parameters
refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0622 P)^{2}\right.$
$+1.3800 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i}, \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Tel	0.07929 (2)	0.592048 (11)	0.899581 (9)	0.01296 (8)
Br 1	0.10054 (3)	0.38493 (2)	0.92671 (2)	0.01919 (9)
S1	0.19666 (7)	0.75449 (5)	0.93479 (4)	0.01799 (15)
S2	0.33051 (7)	0.57034 (5)	0.96452 (4)	0.01944 (15)
S3	-0.08252 (6)	0.72006 (5)	0.83570 (4)	0.01698 (14)
S4	-0.14727 (7)	0.51475 (5)	0.83710 (4)	0.01939 (15)
O1	0.3343 (2)	0.5451 (2)	0.55487 (12)	0.0255 (5)
N1	0.4348 (2)	0.7378 (2)	1.00888 (15)	0.0234 (5)
N2	-0.3118 (2)	0.6481 (2)	0.77751 (15)	0.0210 (5)
C1	0.3334 (3)	0.6917 (2)	0.9738 (2)	0.0179 (5)
C2	0.5496 (3)	0.6837 (2)	1.0442 (2)	0.0256 (6)
C3	0.5234 (3)	0.6495 (2)	1.1297 (2)	0.0275 (6)
C4	0.4412 (4)	0.8424 (2)	1.0148 (2)	0.0347 (8)
C5	0.3908 (5)	0.8795 (3)	1.0937 (3)	0.0472 (9)
C6	-0.1948 (3)	0.6289 (2)	0.8122 (2)	0.0175 (5)
C7	-0.4145 (3)	0.5724 (2)	0.7683 (2)	0.0290 (7)
C8	-0.3981 (4)	0.5128 (3)	0.6925 (2)	0.0373 (8)
C9	-0.3505 (3)	0.7450 (2)	0.7515 (2)	0.0250 (6)
Cl 10	-0.4240 (3)	0.7986 (3)	0.8174 (2)	0.0329 (7)
Cl 1	0.1695 (2)	0.5803 (2)	0.7827 (2)	0.0147 (5)
C12	0.2157 (3)	0.6603 (2)	0.7418 (2)	0.0160 (5)
C13	0.2721 (3)	0.6526 (2)	0.6652 (2)	0.0178 (5)
Cl 4	0.2814 (3)	0.5628 (2)	0.6292 (2)	0.0175 (5)
Cl 5	0.2350 (3)	0.4824 (2)	0.6701 (2)	0.0211 (6)
C16	0.1798 (3)	0.4911 (2)	0.7464 (2)	0.0182 (5)
C17	0.3909 (4)	0.6241 (2)	0.5123 (2)	0.0297 (7)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

Tel-Cll	2.147 (3)	S4-C6	1.715 (3)
Tel-S3	2.6184 (8)	$\mathrm{Ol}-\mathrm{C} 14$	1.366 (3)
Tel-Sl	2.6187 (8)	$\mathrm{Ol}-\mathrm{Cl} 7$	1.433 (4)
Tel-S4	2.6910 (9)	$\mathrm{N} 1-\mathrm{Cl}$	1.323 (4)
Tel-S2	2.7211 (10)	$\mathrm{Ni}-\mathrm{C} 4$	1.470 (4)
Tel-Brl	2.9427 (7)	$\mathrm{N} 1-\mathrm{C} 2$	1.482 (4)
Tel $\cdots \mathrm{Brl}^{\text {i }}$	3.4229 (10)	N2-C6	1.316 (4)
$\mathrm{S} 1-\mathrm{Cl}$	1.735 (3)	N2-C9	1.473 (4)
S2-Cl	1.707 (3)	N2-C7	1.480 (4)
S3-C6	1.737 (3)		
Cll-Tel-S3	87.67 (7)		89.801 (9)
C11-Tel-S1	94.06 (7)	$\mathrm{Cl}-\mathrm{Sl}-\mathrm{Te}$ l	89.18 (10)
S3-Tel-S1	76.27 (3)	C1-S2-Tel	86.41 (9)
C11-Tel-S4	89.51 (7)	C6-S3-Tel	88.58 (10)
S3-Tel-S4	67.44 (3)	C6-S4-Tel	86.66 (9)
SI-Tel-S4	143.36 (2)	C14-O1-C17	117.5 (2)
Cli-Tel-S2	86.75 (7)	$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 4$	123.2 (3)
$\mathrm{S} 3-\mathrm{Te} 1-\mathrm{S} 2$	142.12 (2)	$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 2$	119.9 (2)
S1-Tel-S2	66.81 (2)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2$	116.8 (2)
S4-Tel-S2	149.83 (2)	C6-N2-C9	122.6 (2)
CII-Tel-Brl	91.73 (7)	C6-N2-C7	120.3 (3)
S3-Tel-Brl	141.09 (2)	$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 7$	117.0 (2)
$\mathrm{Sl}-\mathrm{Tel}-\mathrm{Brl}$	142.45 (2)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{S} 2$	122.5 (2)
S4-Tel-Brl	73.65 (2)	$\mathrm{Nl}-\mathrm{Cl}-\mathrm{Sl}$	120.1 (2)
S2-Tel-- ${ }^{\text {- }}$	76.55 (2)	S2-C1-S1	117.4 (2)
$\mathrm{Cll}-\mathrm{Tel} \cdots \mathrm{Brl}^{\text {i }}$	173.05 (7)	N2-C6-S4	122.1 (2)
S3-Tel $\cdot \cdot \mathrm{Brl}{ }^{\text {i }}$	86.64 (2)	N2-C6-S3	120.6 (2)
Sl -Tel $\cdots \mathrm{Brl}{ }^{\text {i }}$	88.46 (2)	S4--C6-S3	117.3 (2)
S4-Tel \cdot - Brl^{1}	84.63 (2)	$\mathrm{Cl}-\mathrm{Cll}-\mathrm{Cl} 2$	119.2 (2)
S2-Tel...Brl ${ }^{\text {i }}$	100.20 (3)	Cl6-Cll-Tel	119.4 (2)
$\mathrm{Brl}-\mathrm{Tel} \cdots \mathrm{Brl}^{\text {i }}$	90.197 (9)	Cl2-Cll-Tel	121.5 (2)

($11-\mathrm{Tcl}-\mathrm{Brl}$. Tel^{1}	-173.32 (7)	S3-Tel-C11-C16	-126.1 (2)
T1-S2-Cl-S1	-4.08 (14)	$\mathrm{S} 1-\mathrm{Tel}-\mathrm{Cl1}-\mathrm{Cl} 16$	157.8 (2)
S2	4.24 (15)	S4-Tel-C11-C16	-58.7 (2)
-S4-C6-S3	1.48 (14)	$\mathrm{S} 2-\mathrm{Tel}-\mathrm{Cl1}-\mathrm{Cl} 16$	91.4 (2)
T1-S3-C6-S4	-1.52(15)	$\mathrm{Brl}-\mathrm{Tel}-\mathrm{Cll}-\mathrm{Cl} 2$	166.3 (2)

Symmetry code: (i) $-x, 1-y, 2-z$.
Refinement was on F^{2} for all reflections except for 10 flagged by us for potential systematic errors.

Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993).

We wish to thank Mr Steffen Kudis, Department of Chemistry, University of Heidelberg, Germany, for assistance during the synthesis of the compound.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1340). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands. Haiduc, I., King, R. B. \& Newton, M. G. (1994). Chem. Rev. 94, 301-326.
Husebye, S. (1983). Proceedings of the Fourth International Conference on the Organic Chemistry of Selenium and Tellurium. University of Aston, England, edited by F. J. Berry \& W. R. McWhinnie, pp. 298-378.
Husebye, S., Kudis, S. \& Lindeman, S. V. (1996a). Acta Cryst. C52, 424-429.
Husebye, S., Kudis, S. \& Lindeman, S. V. (1996b). Acta Cryst. C52, 429-432.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 2024-2026

Rhoiptelenyl Acetate, a New Pentacyclic Triterpenoid from Ficus thunbergii

t. Kiyotan, J. Kitaima, Y. Tanaka and H. Ageta*
Showa College of Pharmaceutical Sciences, Machida, Tokyo 194, Japan
(Received 26 October 1995; accepted 2 February 1996)

Abstract

Rhoiptelenol, (2), isolated from Ficus thunbergii Maxim. (Moraceae), has been reported as a triterpenoid component. The title compound, (1), whose molecular formula was shown by its high-resolution mass spectrum to be $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{2}$, was obtained from (2) by acetylation with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine. The structure of (1) was

